
Carleton College Carleton College 

Carleton Digital Commons Carleton Digital Commons 

Faculty Work Physics and Astronomy 

2008 

Controlling the ratchet effect for cold atoms Controlling the ratchet effect for cold atoms 

Anatole Kenfack 
Max-Planck-Institut fu¨r Physik Komplexer Systeme 

Jiangbin Gong 
National University of Singapore 

Arjendu K. Pattanayak 
Carleton College 

Follow this and additional works at: https://digitalcommons.carleton.edu/phys_faculty 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Kenfack, Anatole, Jiangbin Gong, and Arjendu K. Pattanayak., "Controlling the ratchet effect for cold 
atoms". Physical Review Letters, vol. 4, no. American Physical Society, 2008. Available at: https://doi.org/
10.1103/PhysRevLett.100.044104. . [Online]. Accessed via Faculty Work. Physics and Astronomy. 
Carleton Digital Commons. https://digitalcommons.carleton.edu/phys_faculty/17 
The definitive version is available at https://doi.org/10.1103/PhysRevLett.100.044104 

This Article is brought to you for free and open access by the Physics and Astronomy at Carleton Digital Commons. 
It has been accepted for inclusion in Faculty Work by an authorized administrator of Carleton Digital Commons. For 
more information, please contact digitalcommons.group@carleton.edu. 

https://digitalcommons.carleton.edu/
https://digitalcommons.carleton.edu/phys_faculty
https://digitalcommons.carleton.edu/phys
https://digitalcommons.carleton.edu/phys_faculty?utm_source=digitalcommons.carleton.edu%2Fphys_faculty%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.carleton.edu%2Fphys_faculty%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1103/PhysRevLett.100.044104
https://doi.org/10.1103/PhysRevLett.100.044104
https://doi.org/10.1103/PhysRevLett.100.044104
mailto:%20digitalcommons.group@carleton.edu


Controlling the Ratchet Effect for Cold Atoms

Anatole Kenfack,1 Jiangbin Gong,2 and Arjendu K. Pattanayak3

1Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
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Low-order quantum resonances manifested by directed currents have been realized with cold atoms.
Here we show that by increasing the strength of an experimentally achievable delta-kicking ratchet
potential, quantum resonances of a very high order may naturally emerge and can induce larger ratchet
currents than low-order resonances, with the underlying classical limit being fully chaotic. The results
offer a means of controlling quantum transport of cold atoms.

DOI: 10.1103/PhysRevLett.100.044104 PACS numbers: 05.45.�a, 05.60.Gg, 37.10.Jk

The ratchet effect, i.e., the possibility to derive directed
transport without bias in periodic systems with broken
symmetries, was originally proposed by Feynman. This
effect, prohibited in systems at equilibrium by the second
law of thermodynamics [1], has recently gained renewed
interest [2,3] as a model for the physics of molecular
motors [4]. Directed transport is possible when particles
are driven out of equilibrium and relevant spatiotemporal
symmetries are broken [5]. This has motivated the con-
struction of nanoscale devices in which artificial ratchets
may serve as new electrons pumps, molecular switches,
and particle selectors, among other applications [4,6,7].
Other studies have shown that when the noise is absent,
its role can be replaced by deterministic chaos induced by
the inertial term [8]. In such inertial ratchets, the issue of
current reversal was intuitively addressed [9] and later
carefully reformulated [10]. Purely Hamiltonian ratchets,
where noise and friction are eliminated, have received
notable attention as well [5,11].

Besides these classical ratchets, quantum Hamiltonian
ratchet effects arising from purely unitary evolution is also
possible. These are very important, for example, for the
design of coherent nanoscale devices [12]. Exploring quan-
tum coherence phenomena in chaotic Hamiltonian ratchets
hence becomes necessary. The quantum delta-kicked rotor
(QKR), a paradigm of quantum chaos [13], is a convenient
and experimentally realizable model for such explorations,
possessing dynamical localization [14], quantum accelera-
tor modes [15], tunneling [12,16], as well as quantum
resonances [17–23]. The ‘‘quantum ratchet accelerator,’’
where the coherent ratchet current accelerates linearly, was
first studied with a modified QKR and later in the kicked
Harper model [24].

Since the pioneering experiment of cold-atom ratchets
[25], new designs looking for ratchet effects in nonlinear
Hamiltonian systems [26] have emerged. Motivated by the
first experimental realizations of sawtoothlike asymmetric
potentials [27,28] as well as quantum resonance ratchets
[29], in this Letter we revisit the quantum flashing ratchet

model in Ref. [30], with the perspective of detecting and
controlling quantum resonance dynamics of very high
orders. The ultimate goal is to help design powerful means
for the coherent control of the dynamics of cold atoms with
driven but dissipationless optical lattices. For other cold-
atom control scenarios using also Hamiltonian ratchet
effects, see Refs. [31,32].

A quantum resonance occurs when the flashing period is
commensurate with the recoil frequency and is related to
the arithmetic nature of the effective Planck constant ~@ of
kicked systems, occurring specifically if

 

~@ � 4�r=s; (1)

with r, s being mutually prime integers. Cases with small s
and large s values can be called low-order quantum reso-
nance (LOQR) and high-order quantum resonance
(HOQR), respectively. We show below that HOQRs can
manifest themselves strongly in the ratchet current behav-
ior, with their corresponding classical phase space being
fully chaotic. This further enhances the view that quantum
control techniques can be applied to classically chaotic
systems [33].

The system we consider is described, in dimensionless
units, by the following Schrödinger equation [30]:

 i~@
@ 
@t
� �

~@2

2

@2 

@x2 � v�x�
X1

l�0

��t� l� ; (2)

where x is the position, and the potential v�x� �
K�sin�x� � � sin�2x�� is assumed to be periodically flashed
off and on with delta kicks. Here t is the time variable and l
an integer that counts the number of kicks. By super-
imposing a conventional standing wave potential of �=2
spatial periodicity with a fourth-order lattice potential of
�=4 periodicity, such a dissipationless ratchet potential
v�x� has been successfully engineered [27,28]. The
scheme, satisfying the Raman-Nath transition processes
[27,28,34], uses three level atoms with two stable ground
states and one electronically excited state (for more ex-
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perimental details, see Ref. [27]). Our results below can
thus be experimentally verified by taking parameters from
Refs. [27,28] for alkali-metal atoms such as Rb and Cs.
Note that � � V2=V1 and K � V1=2, where V1 and V2

denote the potential depths of the lattice harmonics �=2
and �=4, respectively. The parameter � controls the skew-
ness of the potential. With � 2 �0; 0:5� the sawteeth of the
potential lean left, stimulating the transport to the right for
classical diffusive motion. The familiar rotor potential can
be recovered for � � 0. For this temporally symmetric
system, the ratchet effect is possible only for broken spatial
symmetry, i.e., for � � 0. We use scaled units here with
both the spatial L and the temporal T periods set to unity.
The quantum nature of the system is in the effective Planck
constant ~@ � 8!RT, which varies as one adjusts the pulsat-
ing period T. Here!R � @k2

L=2m is the recoil frequency of
the applied laser field, with m the atom mass and kL the
photon wave number that makes up a lattice period of
�2kL��1 for the optical potential.

The quantum map of the above delta-kicked ratchet
model is given by Û � exp��i~@k̂2=2� exp�� iPv�x̂��,
where x̂ and k̂ � �i @@x represent the position and the
wave number operators, respectively. Here we have also
defined P � K=~@ for later use. All computational ex-
amples presented below are for fixed skewness parameter
� � 0:3.

Quantum resonances have been long studied in kicked
rotor systems [17–21]. A direct observation of quantum
resonance dynamics is known to require initial states with
long coherence width. This issue is heightened for HOQRs.
Very recently noncondensed atoms were used to indirectly
observe a particular family of HOQRs [35]. However,
using Bose-Einstein condensates loaded in optical lattices
[23,29], one can now easily realize initial quantum states
whose coherence spans many optical lattice sites, resulting
in the observations of the main quantum resonance [29] as
well as quantum resonances of relatively low orders [23].
Given this experimental progress we assume below, unless
stated otherwise, that the initial wave function is homoge-
neous with zero initial momentum. We then let ~@ take
specific values and explore new quantum resonance effects
in the ratchet transport.

The ratchet current, denoted hki below, is defined as the
expectation value of k̂. Its time dependence is shown in
Fig. 1 for several values of the potential strength P and for
specific values of ~@. One clearly sees in Fig. 1(a) that there
is no directed transport for ~@ � 1:001� with any value of
the potential strength. By sharp contrast, the current accel-
eration may be strongly favored in one or the other direc-
tion as illustrated in Figs. 1(b)–1(d), where ~@ � 0:7� for
�r; s� � �7; 40�, ~@ � 2:625� for �r; s� � �21; 32�, and ~@ �
1:5� for �r; s� � �3; 8�, respectively. Note that cases in
Figs. 1(b) and 1(c) represent quantum resonances of very
high orders (much higher than those observed in Ref. [23]).
Unlike the ratchet current of a low-order resonance (where
current reversal may be well understood by noticing that

the wave function amplitude at a point x at t � l is a
coherent sum of the wave function amplitudes at other
locations at t � l� 1 [30]), here a simple explanation of
the HOQR current dependence on P is not available.
Indeed, an analytical treatment of the ratchet transport
associated with those very high-order resonances seems
very difficult, even for a perturbation theory using very
small � [36].

Figure 2 displays hki after 200 temporal periods as a
function of ~@. In Fig. 2(a) P � 0:5 and the results corre-
spond to the findings of Ref. [30], showing a net drift at
those quantum resonances where ~@=� is given by half-
integers. As we increase P the system exhibits dramatic
changes. For example, when P � 1:0 in Fig. 2(b) two twin
peaks emerge. One also sees, as shown in Figs. 2(c) and
2(d), that larger values of P lead not only to a proliferation
of peaks, but also to current reversals. As shown in Table I,
many of these peaks are found to be associated with very
high-order quantum resonances covering a wide range of
(r, s). Remarkably, these high-order resonances may yield
larger ratchet current acceleration than the main reso-
nances, and in either case the current direction depends
on P. Note, however, that HOQRs do not always transport
better than LOQR (compare, for example, the HOQR at
@=� � 0:6 to the LOQR at @=� � 0:5, 1.5, 3.5). Figure 2
also shows that relatively small changes in ~@ can dramati-
cally change the ratchet current, thus experimentally offer-
ing a means of isolating different HOQRs. This also
suggests that particles with slightly different masses, hence
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FIG. 1 (color online). Time dependence of the ratchet current
for various P; ~@. In (a) ~@ � 1:001� with no directed transport.
In (b) ~@ � 0:7� �r=s � 7=40�, (c) ~@ � 2:625� �r=s � 21=32�
and (d) ~@ � 1:5��r=s � 3=8�, and transport occurs with
P-dependent rates and direction. For reading in gray-scale, the
P values for each panel are reported below in the sequence of
curves from top to bottom, in (a) at t � 15 and for other panels at
all times. (a) P � 6:0 (magenta), 5.0 (brown), 4.0 (cyan) 3.0
(blue), 2.0 (green), 1.0 (red), 0.5 (black): in (b) P � 5:0 (brown),
1.0 (red), 2.0 (green), 0.5 (black), 6.0 (magenta), 3.0 (blue), 4.0
(cyan); in (c) P � 8:0 (magenta), 7.0 (brown), 4.0 (blue), 3.0
(green), 2.0 (red), 1.0 (black), 5.0 (cyan); in (d) P � 4:0 (cyan),
3.0 (blue), 5.0 (brown), 2.0 (green), 1.0 (red), 0.5 (black), 6.0
(magenta).
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slightly different ~@ and different P due to an isotope effect,
may display qualitatively different kinds of transport.
Neglecting at the moment the nonideal situation in experi-
ments, note that the resonance peaks shown in Fig. 2 are
better resolved with increasing kicks since the absolute
amplitude of the current peaks is proportional to the num-
ber of kicks.

We now comment on the possibility of experimentally
observing these HOQR peaks. Using constraints associated
with state-of-the-art experiments, we have carried out ex-
tensive computations [37], verifying that the above-
observed HOQR ratchet current can be clearly observed
in experiments, at least for time scales of 20–30 kicks. In
particular, the ratchet currents are sufficiently stable when
(i) considerable dephasing is present, (ii) a finite
pulse width instead of delta kicks is considered, and
(iii) a realistic quasimomentum spread in the initial state
is considered. For example, for the case of ~@ � 2:625�,
P � 5:0 shown in Fig. 1(c), we find that the HOQR ratchet
current deviates considerably from the ideal case only after
about 20 kicks, for a realistic quasimomentum spread as
estimated in Ref. [23]. We have also checked that if a
superposition state of momentum (such as in Ref. [29]) is
used as the initial state, then a HOQR ratchet current can be
also effectively demonstrated without using a bichromatic
optical lattice.

Let us now briefly describe the classical dynamics of the
model system. With the classical stochasticity parameter or
kick strengthK � ~@P, the associated classical map is given

by pl�1�pl�K�cos�xl��2�cos�2xl��; xl�1�xl�pl�1,
where pl is the momentum variable conjugated to the
coordinate xl. Figure 3 displays the classical phase space
for � � 0:3 and for varying K. As K increases, the islands
initially dominating the phase space shrink and decrease in
number [see Figs. 3(a)–3(c)], until a threshold value Kthr,
when essentially full chaos is reached. In Fig. 3(d), K �
0:8�>Kthr � 0:75�, the entire phase space is seen to be
chaotic.

Remarkably, we observe that clear HOQR peaks of the
ratchet current emerge only when the classical counterpart
is fully chaotic. This observation has been checked by
varying � in the range 0 to 10, with different Kthr. Such a
connection between a purely quantum phenomenon and a
purely classical phenomenon is worthy of some remarks,
though a profound explanation may not exist. First, quan-
tum resonances lead to continuous energy bands [17]. A
potential of height P � K=@ supports only a certain num-
ber of energy bands (denoted n) that are below the potential
barrier. As the well deepens, n increases with K, specifi-
cally n /

����
K
p

as shown in the inset in Fig. 4. For a fixed
~@ � K=P, larger K corresponds to more classical chaos,
and leads to more bands that can contribute to transport,
whence a HOQR is more likely to be detected.
Alternatively, as we increase K for fixed P, n increases,
leading to more resonant values ~@ being available. Both
ways, the result is more peaks in the plot of the ratchet
current vs ~@. As such, chaos and HOQRs, both requiring
sufficiently large K, go hand-in-hand, an interesting result
also noticed [35] using other signatures. Since classical
chaos arises through the growth of nonlinear resonances
[38], its connection with HOQRs might exist at a deeper
level, though further work along this line is beyond the
scope of this Letter. Finally, note that for our Hamiltonian
ratchet model, directed transport may occur for n < 2,
albeit being weaker than in cases with larger n. This is in

TABLE I. Some high-order resonances in Fig. 2(d).

~@=� 0.6 0.7 0.75 1.125 1.55 3.3

(r, s) (3, 20) (7, 40) (3, 16) (9, 32) (31, 80) (33, 40)

FIG. 3. Classical phase-space structures for the kicked ratchet
map for � � 0:3 showing regular islands embedded in the
chaotic sea for (a) K � 0:25�, (b) K � 0:55�, and
(c) K � 0:70�. In panel (d) K � 0:8� and full chaos is reached.
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kicks, with the potential parameter � � 0:3, and the potential
strength P indicated in each panel. Main resonances appear in (a)
with low P. As P increases in (b), (c), and (d), full chaos is being
developed (see Fig. 3) and significant ratchet currents due to
higher-order quantum resonances emerge.
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contrast to dissipative systems [39], where the ratchet
effect exists only if there are at least two bands below the
barrier.

Finally, to motivate further theoretical work, we show in
Fig. 4 the average current acceleration rate � 	 hki=l
within l � 100 kicks, as a function of P, for ~@ correspond-
ing to a few HOQRs as well as LOQRs. The size and
direction of � are both seen to be tunable with P, with
their P dependence varying markedly with ~@.

In summary, we have shown the important role of quan-
tum resonances of very high orders in a QKR-based quan-
tum ratchet. The associated transport can be manipulated
by use of these high-order quantum resonances. We also
observe, and partially explain, that the transport associated
with HOQRs become important only if the associated
classical phase space is fully chaotic. The results are of
great experimental interest because they (i) offer a ratchet
acceleration mechanism previously not noticed and
(ii) suggest a new means of detecting the intriguing quan-
tum high-order resonances in QKR systems. This study
should help design new means of controlling the dynamics
of cold atoms in pulsed optical lattices.
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