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Coarse-grained entropy decrease and phase-space focusing in Hamiltonian dynamics

Arjendu K. Pattanayak, Daniel W. C. Brooks, Anton de la Fuente, Lawrence Uricchio, Edward Holby,
Daniel Krawisz, and Jorge 1. Silva
Department of Physics, Carleton College, Northfield, Minnesota 55057, USA
(Received 31 January 2005; published 15 July 2005)

We analyze the behavior of the coarse-grained entropy for classical probabilities in nonlinear Hamiltonians.
We focus on the result that if the trajectory dynamics are integrable, the probability ensemble shows transient
increases in the coherence, corresponding to an increase in localization of the ensemble and hence the phase-
space density of the ensemble. We discuss the connection of these dynamics to the problem of cooling in
atomic ensembles. We show how these dynamics can be understood in terms of the behavior of individual
trajectories, allowing us to manipulate ensembles to create “cold” dense final ensembles. We illustrate these
results with an analysis of the behavior of particular nonlinear integrable systems, including discussions of the
spin-echo effect and the seeming violation of Liouville’s theorem.

DOI: 10.1103/PhysRevA.72.013406

I. INTRODUCTION

The evolution of probability distributions in nonlinear
Hamiltonian systems is fundamental to nonequilibrium sta-
tistical mechanics [1]. The rich behavior that results when
the classical point dynamics are mapped onto the quantum
and classical probability dynamics continues to provide in-
triguing problems for study. Recent work [2,3] has used a
coarse-grained analysis of such Hamiltonian systems to
study the interesting phenomenon of coherence enhancement
for an ensemble. This considered the behavior of the entropy
for a coarse-grained classical distribution evolving in a non-
linear integrable Hamiltonian. A coarse-grained distribution
(defined more carefully below) results from a Liouville prob-
ability distribution being smoothed with a function (for ex-
ample, a Gaussian, possibly representing the measurement
resolution limits in each phase-space dimension) at each
phase-space point. It may also be constructed by considering
the behavior of many individual trajectories, and by counting
the number in small but finite-sized bins in phase-space. The
analysis showed that the entropy of the coarse-grained dis-
tributions could actually be significantly decreased.

The entropy of the standard unsmoothed distribution does
not change for Hamiltonian systems, as expected from Liou-
ville’s theorem. However, the coarse-grained entropy and
density can indeed change and in particular be improved via
Hamiltonian dynamics. In that coarse-graining seems artifi-
cial, the question that must immediately be answered is:
What is the physical meaning of the coarse-grained results;
are they real, in short? We argue below in some detail that
coarse-grained dynamics are physically meaningful for vari-
ous reasons: (i) They arise naturally as a result of a physical
lack of infinite resolution in phase-space. (ii) Coarse-
graining also applies whenever any real classical ensemble
(formed from a finite set of particles) is considered. (iii)
Most convincingly, this change in the coarse-grained quanti-
ties can be mapped to experimental signals, as also discussed
further below. In particular, this entropy decrease corre-
sponds to an increase in the coherence of the distribution,
i.e., to focusing in phase-space.

There are potentially exciting applications for this inter-
esting result of coarse-grained entropy decrease and phase-
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space focusing. For some systems, as the localization area in
phase-space —7#i, quantum effects are expected to be signifi-
cantly enhanced. When the quantal and classical dynamics
follow each other, this focusing serves as a basis for algo-
rithms to generate sharply localized wave packets with non-
linear techniques. This specific application has begun to be
explored: Excited electrons in Rydberg atoms were studied
[2] to predict that an initial equilibrium ensemble could be
focused tightly in phase-space. This has since been experi-
mentally verified [3] using an ensemble of potassium atoms.
Another application is to cooling and enhancing phase-space
density for an ensemble of particles, a problem at the fore-
front of current experimental physics [4]. Typical approaches
to focusing rely on dissipative techniques, which means that
they are difficult to apply to systems without accessible in-
ternal degrees of freedom. As such, Hamiltonian methods
would greatly expand our ability to cool arbitrary systems.
The cooling application has not yet been explored and is part
of the motivation for this paper.

Below, we present further studies of coarse-grained en-
tropy (CGE) dynamics, showing in particular how CGE os-
cillations relate to phase-space dynamics and hence how this
can be used in specific physical applications. Our goal here is
primarily to explore the physical basis of this behavior. We
first lay out a relatively formal analysis of the connection
between coarse-graining, entropy dynamics, and the behav-
ior of trajectories, including some general protocols. How-
ever, these abstract results do not provide rules for specific
choices of Hamiltonians, parameters, and initial conditions.
We then translate the broader concepts to more intuitive
ideas about the behavior of trajectories, by looking at some
applications, discussing in particular the connection to the
spin-echo effect, for example. We also explore the connec-
tion to recent information-theoretic perspectives on cooling
of atomic ensembles. We then consider some results from
specific Hamiltonians and show that at least two different
aspects of Hamiltonian trajectory dynamics can lead to co-
herence enhancement. We discuss the subtle ways in which
fundamental results such as Liouville’s theorem apply in
these situations, and conclude by discussing specific applica-
tions, including the cooling of ensembles.

©2005 The American Physical Society
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II. TRAJECTORIES AND COARSE-GRAINED
ENTROPY DYNAMICS

We derive here the connection between CGE dynamics
and trajectory dynamics; the analysis follows previous work
[2,5] but also makes this connection explicit. The crucial part
of this section are the results showing entropy oscillations in
general integrable Hamiltonians, Eq. ((27) in particular.

Consider a distribution p(x,#) with the phase-space vari-
ables x()=(p,q) denoting both the momentum and configu-
ration variables. This distribution may represent a cloud of
noninteracting particles, multiple realizations of single-
particle dynamics, or our knowledge of a single particle’s
dynamics with associated uncertainty. In some limit, these
quantum dynamics of all these situations are expected to
follow the behavior of this distribution, and many of our
results apply to quantum-mechanical systems as well—this is
discussed briefly later.

The Liouville equation

9% _
071‘ - H’p} (1)

applies to the general classical situation, where {A,B} is the
Poisson bracket for the phase-space functions A, B. We now
show that the coherence of such distributions oscillates in
complete generality for nonlinear integrable Hamiltonians.
To start, we need a measure for the coherence. The coher-
ence arguably represents the extent to which members of the
ensemble have similar properties, or alternatively, the degree
to which we have certainty about the location of a single
particle in phase-space. Given an information-theoretic per-
spective, it is intuitive that a reasonable measure of the de-
gree of statistical coherence of p(x,f) is provided by some
form of entropy for the distribution. Either the Gibbs entropy
~Tr{pIn(p)] or the analytically more useful Renyi entropy
[6] —In[Tr(p?)] may be used, where Tr denotes the trace or
integral over all phase space variables. However, as is
known, since the Liouville equation can also be written as
dplx(1),t]/dt=0, all functions of p, including the entropy, are
constant in time for systems evolving under the Liouville
equation. This property of the fine-grained distribution (that
is, a distribution that is not coarse-grained in any way) is
singular. That is, the behavior of a distribution that is coarse-
grained by any amount, no matter how small, is distinctly
different from that of the fine-grained distribution. This ap-
plies to both classical and quantal distributions. The coarse-
graining in these cases could be static (due to resolution/
measurement coarse-graining). Of course, in any realistic
situation the system of interest is coupled, albeit weakly, to
other systems. Even a zero-temperature quantum-mechanical
system is coupled to the vacuum. This is typically repre-
sented by taking the deterministic equations of motion and
adding noise with some specified spectrum to represent the
ignored degrees of freedom. Again, the behavior of the sys-
tem for vanishing coupling to the environment is of interest.
This is usually termed dynamical coarse-graining. In what
follows, we assume that we are near the zero limit for both
coarse-grainings, but also that the static coarse-graining
masks dynamical coarse-graining on the time scales of inter-
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est. Finally, for classical mechanics, a continuous p does not
represent a real classical ensemble of point particles as accu-
rately as the coarse-grained construction defined below.
Thus, to usefully and accurately understand the behavior of
distributions, a small but finite coarse-graining must be used.
We show more carefully below that this coarse-graining is
particularly useful in distinguishing a coherent distribution
from one that is more spread out.

One way to coarse-grain a distribution therefore is to di-
vide phase-space into equally spaced cells defined by vectors
of length &% centered at phase-space points x; where i=1, 2,
... labels the cells in phase-space. These cells have hypervol-
ume

S
A = J dx. (2)

0

The values of the densities associated with each of these
phase-space points correspond to the average value of the
density within a given cell [7],

K S/2

pi(t)=— dxp(p.q.1). 3)

A i _sin
The coarse-grained Renyi entropy can then be defined in the
usual way [7] as

S =~1n| A pi(0) |. (4)

i=1

Our interest therefore is in the dynamics of §,.

Instead of solving for the behavior of the continuum ob-
ject p and then coarse-graining to find p;, we computationally
follow a method termed the classical trajectory Monte Carlo
method (see Ref. [2], for example). A large but finite en-
semble of Ny, phase-space points are generated, distributed
according to a chosen initial density. Each point is then
evolved forward using the Hamiltonian equations of motion.
The coarse-grained density is then numerically calculated as

(o Li (5)
! OA Ny

where N; is the fraction of the trajectories lying in the cell
centered at fi, and the CGE calculated from this as above.
This quantity then goes over identically to the coarse-grained
density obtained as in Eq. (3) from the continuum field in the
limit limNmHm.

We now analyze the dynamics of S.(¢) as a function of
time for general nonlinear Hamiltonians. This is best under-
stood analytically by using another representation of coarse-
graining where we locally smooth the distribution p(x,#) by a
Gaussian of width J;. An important point to note here is that
the predictions for coherence enhancement proceed from this
kind of local coarse-graining, as opposed to requiring trajec-
tory binning, which means that it applies in principle to
quantum dynamics as well. The coarse-grained Renyi en-
tropy can be written for the Gaussian smoothing case as [8]

013406-2
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P 2
S.=—In Tr[(exp(— 52 @)P(f)) ] (6)

It is useful to consider these quantities in the Fourier repre-
sentation of p, also called its characteristic function. In terms
of the Fourier transform p(k) of p, the Renyi entropy be-
comes

S. = - In{Tr[exp(- 28k |p(k)|*1}, (7)

where the trace now runs over k values. In the limit 6—0, S,
can be written

Se=—In(Tr{p*] - 28 TH{k*[]*]) + O(&) (8)

= In{(1 - 28T T + O(&). ©)

Here we have defined x>=Tr(k%|p|>)/Tr(|p]*>) which is the
second moment of k for p. The quantity y? can be understood
as measuring the degree of fine-scale “structure” in a distri-
bution. That is, as a distribution needs more Fourier compo-
nents of higher k in order to be accurately specified, x> in-
creases. Notice that the terms being neglected of higher order
in & are related to k*, k°, etc., indicating that S, as defined
ignores higher-order information in the distribution, as ap-
propriate.

The entropy dynamics depend on x*(f). This quantity has
been analyzed in some detail previously [9] and has been
shown to be useful in various contexts, arising from being
the measure of the sensitivity of a distribution to coarse-
graining. For example, an unusual recent result [5,10] is that
some persistent patterns [11,12] that arise in the context of
chaotic two-dimensional fluid dynamical systems are charac-
terized by an approximately constant ?, which can be inter-
preted as resulting from a balance between chaos and noise
in the system. x> has also proven useful in understanding
quantum-classical correspondence in chaotic systems
[13,14]. One reason x? is useful is that the classical trajectory
dynamics can be mapped directly onto the behavior of x?, as
we now show.

Consider a possibly time-dependent Hamiltonian H(x,?)
where X< (p,g). The equations of motion for x(¢) are just
Hamilton’s equations, written here as

=00 (10)

with individual components x,=v,(x). The stability of the
dynamics is characterized by considering the behavior of lin-
earized deviations from the trajectories; thus, substituting x
+5 in Eq. (10), we get

i = Js(1), (11)

where the elements of the matrix J,z=dv,/dxz. The eigen-
values of 7 in general vary along the trajectory x(¢). In par-
ticular, we write the dynamics of § as

(1) = Ms(0), (12)

where M is given by [15] the time-ordered series
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M(1,%(0)) = Texpfl J(ndr (13)
0

and 7 is the time-ordering operator. A real symmetric matrix
MT. M (the transpose being denoted by M) can now be
defined and diagonalized [15] as

MT - M = 2w, (1,5(0)) 0 (£, 5(0))uf (1,%(0)).  (14)
k

The u,; constitute a local orthonormal tangent space for the
flow. This basis set of unit vectors is well defined at every
point of the trajectory x(¢), although it changes orientation at
each point [note that we use Latin indices (k, /) to distinguish
vector components in this basis]. In this basis, components of
the matrix M- M can be written as o(7,x(0))8,; and also

> k() = 2 0y(1,5(0))s2(0). (15)
k k

This holds independent of our choice of s,(0) and hence

s2(1) = o3(1,%(0))s2(0) (16)

for each individual component. For chaotic systems the ei-
genvalues of 7, appropriately averaged [15], are termed the
Lyapunov exponents, and are the time-scale for divergence
of solutions.

We now apply this formalism to p. The Liouville equation
written in terms of the phase-space velocities v is

—=0=—+v-Vp, (17)

where the first equality again represents the incompressibility
of p and the gradient operator V=X _,a&V , is defined in terms

of all phase-space variables. Applying V to the second equal-
ity, we get that

| a
> a Evap+zvﬁvavﬁp+zvavﬁVﬁp =0. (18)
a B B

The first term and the sum over B of the second term (with
the order of differentiation interchanged) is just the total de-
rivative of V_p and the final term can be written as the sum

over the product Jg,V gp. Thus V->p satisfies
d - -
EIVP(t) =-J'Vp(1), (19)

which is also the adjoint equation of variations. The symme-
try of Egs. (19) and (11) is intuitive: For an incompressible
flow, the field p cannot be created or destroyed along trajec-
tories, and hence the probability density profile sharpens
(flattens) along the direction in which trajectories move
closer (further). Equation (19) can be used to generate a so-
lution for Vp just as in Eq. (12). The important point is that
for Hamiltonian systems, the eigenvalues o} that govern the
behavior of the tangent-space vectors S also govern the be-

havior of V.
The critical step in connecting this detailed microscopic
behavior to the dynamics of the entropy is to realize that an

013406-3



PATTANAYAK et al.

average of the gradient over the entire distribution is related
to x> [and hence to S, through Eq. (9)]. In particular, x?
= jXJZ. where

| aawptsonr
= (20)
4172fd)?p2(x(t))
- J dipV;p(i(1))
= (21)
4ﬂlfdfp2(x(t))
f dkk;| (k)
——, (22)
f dk|p(k)[?

where Eq. (21) arises from integrating by parts and the lack
of contribution from boundary terms. Equation (22) follows
from the definition of the Fourier transform. Finally, we can
see that the equivalent of the relationship Eq. (16) for V,p
implies that

dx|Vp(x())|?
X (1) = (23)
47 f dx p*(x(0))

f GEIV p(E(0) o (1,70))
_ (24)

472 f dx p(x(0))

so that the dynamics of x> depend on an average over the
exponentiated eigenvalues of the “stability” matrix J, with
an unusual weighting given by the initial local gradient
squared.

For chaotic systems, the eigenvalues of 7 are real with
nonzero averages, at least one of which is positive, and hence
it can be shown that y? increases exponentially rapidly such
that

liméln()() = A (25)
t—00
where A, is the so-called largest Lyapunov exponent. For
integrable (regular, nonchaotic) dynamics, on the other hand,
the eigenvalues of 7 are imaginary, so that x> can be written
as a sum over periodic functions with different frequencies.
In general, this is a sum with a continuous spectrum of fre-
quencies, and hence x* executes bounded dephasing oscilla-
tions. This shows clear oscillations for short times, with a
slow increase for longer times.

We now use this to deduce how nonlinear Hamiltonian
dynamics manipulate or change the encoded information in
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the distribution. First, note that since X2 measures the amount
of structure in the distribution, it effectively measures
whether the information encoded in p is resident at lower or
higher resolution or equivalently at lower or higher degrees
of correlations within members of the ensembles. The physi-
cal loss of information about higher correlations due to en-
vironmental perturbations or experimental lack of resolution
corresponds analytically to an increase in entropy due to
coarse-graining. This is precisely what happens as x? in-
creases, as can be seen from Eq. (7) and subsequent approxi-
mations. Explicitly, for systems not coupled to the environ-
ment, for short time scales,

S o X2 (26)

For nonlinear chaotic dynamics, y? increases essentially
monotonically [16], so that information moves unidirection-
ally and increase of the CGE. On the other hand, for nonlin-
ear integrable dynamics the oscillating behavior of y? noted
above means that in full generality the information in the
distribution moves back and forth between the lower and
higher degrees of correlation of the distribution as a result of
the natural Hamiltonian dynamics. Thus, when X2 is large, in
a coarse-grained version of such a system we have in prin-
ciple lost some information about the system. However, the
deterministic dynamics dictates that x> will then oscillate, or
that the information will flow back into the system from the
finest scales. When it does so, the state decreases its x2 and
hence has lower CGE, and would be more coherent or local-
ized.

This result is the central basis of the phenomenon we are
exploring of coherence enhancement, establishing that in
general integrable nonlinear Hamiltonian dynamics, the co-
herence of ensembles can be enhanced. Mathematically, if y
remains small, as is true in the short-time limit for integrable
systems, a final good approximation yields

S.(t) = C+28°(t) + O(&), (27)

where C is some constant dependent upon the initial distri-
bution. Since S, is oscillating, it can in general be less than
its initial value at certain times during the evolution as the
distribution relaxes towards its long-time limit of increased
entropy. Thus transient increases in coherence as measured
by the entropy of the coarse-grained distribution are a com-
pletely general phenomenon in nonlinear Hamiltonians.

Several points should be noted:

(i) This oscillation of y?> generally only holds for short
times. As is clear below, by “short times” we mean that the
oscillations occur over a few characteristic time periods of
the natural periodic orbits of the trajectories in the distribu-
tion. The generic behavior of x? is dephasing oscillations, or
sum over oscillations with a continuum of frequencies, and
as such the asymptotic behavior is that x*> grows slowly.
Specifically, unlike chaos, this growth is not exponentially
rapid.

(ii) The value of x> nominally does not affect the fine
grained entropy of the distribution (that is, the entropy com-
puted with no added coarse-graining). However, some sort of
coarse-graining always exists, including, for example,
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particle-particle collisions in atomic ensembles, and the CGE
oscillation therefore is a real result. This means that as a
general result, the entropy of a distribution in a nonlinear
integrable Hamiltonian system will oscillate for short times.

(iii) & is not a property of the “system” in that it repre-
sents an “external” resolution or measurement, so that the
system does not know about it. It is therefore a good ques-
tion to ask how ¢ affects the size of the oscillation of the
coherence. By examining the definition of the coherence we
can see that all 6 does is set the zero and an entirely arbitrary
scale for the oscillation. As is appropriate, physical measures
corresponding to experimentally observable signals must be
used to set the scale of the oscillation; these are idiosyncratic
for each application.

(iv) Similarly, we note that this oscillation is mathemati-
cally entirely generic—that is, it holds in principle for arbi-
trary choices of initial conditions and integrable nonlinear
Hamiltonians. Physically, however, it is clear that initial con-
ditions critically matter to the size of the visible effect. A
near-equilibrium (or almost completely dephased) distribu-
tion for a given Hamiltonian will not show significant physi-
cally relevant enhancement of coherence. Also, that the co-
herence generically oscillates for a distribution does not
guarantee that the future state of the distribution will neces-
sarily improve on the initial state. Equivalently, the time
scales of oscillations might not be physically useful. As such,
careful analysis is in general important such that this result
can be constructively applied.

A general protocol using this result for coherence en-
hancement suggests itself: Let the initial distribution be an
equilibrium distribution for some nonlinear Hamiltonian. At
this point, either (a) apply an abrupt perturbation or (b)
change the Hamiltonian. The ensemble is now a nonequilib-
rium distribution and will undergo some dynamics on the
way to equilibrium. At times long before it has relaxed to
equilibrium, there will be situations where it is transiently
more focused than it was initially. At this point, if appropri-
ate, the coherence of the ensemble could be used directly.
Alternatively, it is possible to apply an appropriate Hamil-
tonian at this point such that the distribution is then
“trapped” in phase-space, and is in a state of greater coher-
ence than it was initially.

Having derived the formal relationship between classical
trajectory dynamics and the CGE of an ensemble, and pre-
sented a broad protocol for exploiting this, we now turn to a
more careful analysis, specifically to understand the physical
signatures of changes in the CGE.

III. COARSE-GRAINED ENTROPY AND
PHYSICAL MEANING

We now consider how the coarse-grained entropy trans-
lates to physical signatures, particularly a broader intuitive
discussion of the issues to help enhance our physical under-
standing. We maintain this intuitive perspective in the rest of
the paper.

It is useful to think about these issues visually: The dif-
ference between the fine-grained and CGE (or density) is
roughly the difference between the (hyper)volume and sur-
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face (hyper)area of the phase-space distribution: The volume
remains constant but the bounding surface can change fairly
dramatically in size. This is easiest visualized in a two-
dimensional phase-space, where this translates to a constant
area with changing perimeter.

Now consider a hypothetical distribution in phase-space,
and the various possible shapes into which it can be manipu-
lated while retaining its area. The coarse-grained entropy re-
sults indicate that it is possible that the area changes dramati-
cally as the distribution changes shape while undergoing
Hamiltonian dynamics, which is perhaps not too surprising.
However, what is interesting is that this difference in shape
has physical and experimental meaning. This can be under-
stood as follows: Suppose that an experimental signal is as-
sociated with phase-space location, and define this signal as
F(q,p) for what follows. If F changes reasonably rapidly as
a function of phase-space distance; that is, F(q,p;) is sig-
nificantly different from F(g,,p,) for (q,—g.)*+(p;—py)?
small, then the shape of the distribution is going to matter a
great deal in determining the nature and coherence (the range
in F obtained) of the signal. The subjective terms “small”
and “significantly different” scale as required by the experi-
mental signal itself, as well as by the resolution limits with
which we are concerned.

A. CGE increase and chaotic dynamics

To clarify some of the paradoxes of constant entropy, con-
sider the behavior of a chaotic system. In this situation, if we
start with a sharply localized distribution and allow it to
evolve, the fine-grained entropy does not change. The lack of
change of the fine-grained entropy in this case creates a con-
ceptual paradox. It seems to imply that although the chaotic
dynamics of an individual trajectory causes us to lose infor-
mation about it, this information is still maintained somehow
when considering the entire distribution. The information
loss-gain reconciliation is simple enough [9,19]: The same
finite resolution for trajectories that results in error has to be
included in the analysis of distributions, at the very least to
see if predictions in the limit of zero infintesimal coarse-
graining agrees with the fine-grained behavior. That is, infor-
mation in chaotic systems only flows from the lower-order
correlations to the higher-order correlations. This one-way
transfer of information about the distribution from the
grosser scales to the finest scales proceeds exponentially rap-
idly, reflected in the exponentially rapid growth of x*. As
such, for nonlinear chaotic dynamics, the natural dynamics
causes rapid loss of information during the initial stages. The
CGE therefore changes dramatically in a chaotic system, de-
creasing exponentially rapidly initially, followed by a later
linear decay with the time scales set by the Lyapunov expo-
nent of the system [5,13,20,21]. In particular, the critical
point is that the chaotic dynamics spreads the distribution in
a complicated way across phase-space while still maintaining
the same area. In this case again, the physically relevant
quantity turns out to be the coarse-grained description, and
the fine-grained description is a singular limit.

B. CGE dynamics during spin echo

Consider now how this applies to spin-echo dynamics
[17]. The initial condition is an ensemble of spins, all ini-
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tially aligned. In a simple quantitative model, each spin is a
dipole of moment 7 fixed at its center but free to rotate in the

presence of a constant external magnetic field B. The equa-
tion of motion for each dipole is

d m(t)

= ¢ m()XB, 28
et KU (28)

where g is the gyromagnetic ratio. When released from rest
the dipole will precess at a constant angle to B. In particular,

if B is chosen to be the negative z axis and if initially m is in
the x-y plane, the vector remains in the x-y plane and is
given by

m(t) = (m cos(wt),m sin(wt)), (29)

where w=g|B|, such that the tip of the vector traces out a
circle in the x-y plane. This plane is then the phase-space for
this particular dynamical system. Also, the experimental sig-
nal here relates to the particular direction in which the dipole
spin is pointing, that is, the location on a phase-space circle
for the spin.

In considering the ensemble’s behavior, note that in gen-
eral the magnetic field is inhomogeneous. For the moment,
consider spatial inhomogeneities only, such that each spin is
evolving in a slightly different field, and ignore any temporal
fluctuations in the field, including any effect of spin-spin
interactions. This system then maps precisely to an ensemble
of particles distributed on different orbits in a nonlinear in-
tegrable Hamiltonian. In particular, each spin (particle)
moves with a different frequency depending on the local
field.

Without loss of generality, we may visualize this by as-
suming that in phase-space, increasing radial distance from
the phase-space origin corresponds to increasing frequency.
The initial ensemble with the spins almost perfectly aligned
then corresponds to an initial phase-space distribution local-
ized very tightly in angle, but with a certain spread in radius.
As the system evolves, the variation in the various frequen-
cies of rotation for the spins means that each spin moves at a
different rate along its phase-space circle. That is, some or-
bits move faster than others so that the various periodic so-
lutions dephase, and the experimental signal (the magnetiza-
tion density) degrades. The faster spins are “ahead” in their
orbits, which corresponds to the original tightly localized
distribution being stretched out into a spiral-like tendril in
the long run. Note that, as required by Liouville’s theorem,
this tendril maintains the same area as the tightly localized
initial condition.

The interesting part of the spin-echo system is, of course,
that this experimental degradation of the signal can be re-
versed. This can be done in one of two different ways. The
first is if the magnetic field is exactly reversed at some time
t=T. This would mean that that each orbit would now move
“backwards” and retrace its steps, and in particular that the
faster spins would be “behind,” such that the distribution
would congeal back at r=2T into the same tightly localized
distribution as before. An alternative is to apply a magnetic
field in the plane for a short time such that every particle is
rotated around the x axis back onto the x-y plane, say. The
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faster spins are behind again, and the same tightly localized
distribution obtains again in the future. The key point here is
that during the “echo” dynamics the different frequencies of
evolution work to align an incoherent ensemble.

The fine-grained entropy in this case would remain con-
stant throughout the evolution; however, the CGE increases
during the dephasing, and then decreases during the echo
dynamics. This also happens to the experimental signal,
whence the CGE is mapped to a physically relevant quantity
in this situation.

We clarify an interesting and potentially somewhat con-
fusing point: Under ideal conditions, the distribution at ¢
=2T after spin-echo is identical to the distribution at #=0,
and so are the values of the CGE at these two times; the
fine-grained entropy is constant, again, for the entire dynam-
ics. However, under realistic conditions, there are local time-
dependent fluctuations of the magnetic field such that the
original distribution is not exactly recovered by the echo.
This corresponds to a decay in the fine-grained entropy [18]
as well as the CGE and is a different effect from the one we
are currently considering. However, the rate at which the
entropy decays can also be mapped onto the classical dynam-
ics of the system for chaotic systems.

C. Rydberg atom ensembles

An experimental implementation of the protocol sug-
gested above for coherence enhancement has been achieved
for an ensemble consisting of the outermost electron in a set
of Rydberg atoms [3]. A remarkably accurate one-
dimensional representation of this system is given in terms of
the electron’s position g, momentum p, and angular momen-
tum A, by the model time-dependent Hamiltonian

S T G
H:p___‘l'_2+2qu 5(l—”lT), (30)
2 q 2q n=0

in scaled units. An external “delta kicking” is also shown in
the delta-function term: This is the effect of a half-cycle-
pulse (HCP) of a strong time-dependent electric field that can
be applied for very short times to this ensemble as needed. In
the limit that the pulse time is much smaller than the natural
characteristic period of the orbits and essentially occupies an
instant in time, this is a kick, that can be applied once (N
=1 in the sum above) or periodically with spacing T as
needed. Note that the application of a kick derives from a
time-dependent Hamiltonian system. This is a nonlinear sys-
tem with mixed chaotic and regular phase-space when
kicked, and it is nonlinear integrable without the kicking.
This phase-space structure was exploited to manipulate the
phase-space distribution of the ensemble of Rydberg atoms
and increase its statistical coherence. The ensemble in this
case consisted of many parallel assays of the same system.
The enhanced coherence behavior was studied theoreti-
cally [2] in the Rydberg atom problem using the dynamics of
the coarse-grained entropy. The increased coherence was
then mapped onto an experimental signal, the ionization
probability for the electrons. That is, it was shown that start-
ing with an initial condition consisting of the microcanonical
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distribution, and following the prescription above, the coher-
ence of the experimental signal in response to an ionization
probe could be increased dramatically. Specifically, the en-
semble was manipulated such that the number of atoms that
were ionized changed from a relatively flat function of the
probe signal to something that was highly peaked at a spe-
cific voltage [3].

Further analysis [22] shows that the quantum results differ
from the classical results as a function of the ratio y
=her/|Apo| Where the effective Planck’s constant fig=1/n
and 7 is the principal quantum number for the Rydberg sys-
tem, and the kick is scaled Ap,=Ap/n. As y—0 the quan-
tum results approach the classical one.

The analysis in this section confirms that the coarse-
grained entropy for Hamiltonian ensembles is a physical
measure with some distinct advantages in understanding dy-
namics. Specifically, changes in the coarse-grained entropy
can be mapped onto physically and experimentally relevant
concepts, and correspond to changes in the effective focusing
or coherence in phase-space for the ensemble. The lack of
change for the fine-grained entropy of a distribution, on the
other hand, can disguise physically interesting changes in the
ensemble. Arguably therefore the fine-grained entropy being
constant is not the absolute constraint that it has been sup-
posed to be for the issue of phase-space focusing in Hamil-
tonian dynamics. An alternative way of thinking about this is
that while Liouville’s theorem on phase-space volume con-
servation does not tell us anything about the geometry of that
volume, coarse-graining analysis allows us to deduce if this
volume is physically distributed in interesting ways.

D. Information and cooling

Given these abstract results about entropy dynamics, we
now try to understand this in terms of its relationship to the
cooling of atomic ensembles, which has been studied exten-
sively in recent years. Since it is usually understood that
Hamiltonian dynamics do not apply to the increase of phase-
space density, some careful attention is paid to these ideas,
and to explore the relationship to “informational” cooling.

The relationship between coherence and cooling is subtle,
since coherence does not directly translate to a temperature.
In the absence of equilibrium descriptions for the ensemble,
the temperature of an ensemble may be thought of as ap-
proximately given by the average kinetic energy of the par-
ticles. Since the kinetic energy of a particle is %p?, the tem-
perature of a typical ensemble of cold atoms can then be
mapped onto the width in momentum direction of a phase-
space ensemble centered at p=0, for example. As such, it
seems that decreased temperature implies increased coher-
ence. However, since the momentum width tells us nothing
about the width of the distribution in the position direction,
this does not apply. Likewise, it is easy to imagine that even
a tightly localized p could in general be centered at any value
of {p), and could thus have high coherence but also high
average kinetic energy. As such, a simple pair of character-
izations are that cooling corresponds specifically to the in-
crease of density in momentum space at p=0, whereas co-
herence corresponds to the increase of density in phase space
at arbitrary (¢q,p).
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Moreover, in a classic paper [23], Ketterle and Pritchard
point out that the exciting developments in atomic physics
arise from increasing the phase-space density (number of
particles per unit phase-space volume) at the same time as
decreasing the average energy of the ensemble. As such, in
some sense the notion of cooling should be applied only
when both of these effects apply. They also point out that
when applied to a single particle (say an ion in a trap), en-
hanced coherence is inherently the issue of concern. That is,
some particle is initially in some unknown state in a rela-
tively large phase-space volume. If one had detailed knowl-
edge about the particle’s location in phase-space (that is, if p
was sharply localized), applying the appropriate fields would
transfer this particle to the lowest energy state. This corre-
sponds to the assumption that a distribution with an arbitrary
{g,p) can be moved without dissipation to a phase-space
point {(p)=0; that is, effecting the transfer of a specific
amount of momentum is easier than decreasing the “width”
in kinetic energy of an ensemble or the phase-space function
for a single particle. It is also true in general that changing
the expectation value of the position of the distribution to
(g)=0 is relatively simple. Such an argument also applies to
the many-particle (noninteracting) case. In this case, an ap-
propriate field for changing (p) could be one where all the
particles experience essentially the same force. One focus of
Ketterle and Pritchard’s paper is the statement that, given
Liouville’s theorem on phase-space volume conservation,
Hamiltonian dynamics without feedback cannot be used to
cool, or more specifically to achieve increased phase-space
density or coherence. Typically, in fact, cooling is achieved
by using dissipative effects from light scattering off atoms,
atom-atom scattering, evaporation, etc., that is, from cou-
pling to the internal degrees of freedom of the atom.

However, Hamiltonian techniques have been suggested
for manipulating phase-space distributions so that they are
cooler and denser, usually separately. The value of Hamil-
tonian techniques is that they can then be applied in arbitrary
situations, independent of access to internal degrees of free-
dom for the particles in question and as such have a poten-
tially broader application.

Fundamentally, all of these can be understood in terms of
informational cooling, where we trade information about
higher-order correlations of the ensemble for entropy de-
crease corresponding to the lower-order correlations (such as
the momentum width or phase-space extent). An illustration
given by Ketterle and Pritchard is as follows: If you happen
to know there were no atoms near a particular wall of a
container, you could move these walls in closer, thus achiev-
ing higher phase-space density. The information about the
highly localized region of phase-space near the container
wall certainly corresponds here to a very high-order correla-
tion function of the ensemble.

A systematic version of this is termed “stochastic cooling”
[24]. The protocol, starting with an ensemble of noninteract-
ing particles, is as follows: (i) Measure the mean momentum
of some small subset of the particles in the ensemble. (ii)
Now apply the negative of the mean momentum back to the
subset to move this cloud such that it is centered at the origin
in momentum space. Apply this technique repeatedly to dif-
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ferent subsets. To make sure that each measurement ad-
dresses a different subset of the ensemble, a good systematic
step is (iii) allow the dynamics to “re-mix” the particles,
before then going back to (i). The mean value of the momen-
tum of a subset of the ensemble indeed corresponds to
higher-order information for the full ensemble. What this
achieves is a net movement of particles from the “tails” of
the momentum distribution to the center. The net result of
applying this protocol is to increase the density and decrease
the temperature of the distribution simultaneously. In this
case (as in the case of Ketterle and Pritchard’s anecdotal
“moving the walls” method), the agents of the information
transfer between the higher-order and lower-order moments
of the distribution are the experimentalists. The technical is-
sues in the application of this algorithm (as with the moving-
the-walls method) are concerned with the ability to address
this subset of the ensemble so as to use the information about
the higher-order moments.

E. CGE increase in delta-kick cooling

Given the technological challenges of measurement and
feedback, it is tempting to think of how trapping potentials
might be chosen such that the natural dynamics “automati-
cally” effect this transfer of information, i.e., change the
characteristics of the distribution in useful ways without our
intervention. For example, consider “delta-kick cooling,”
which uses Hamiltonian dynamics for the free-particle and
harmonic oscillator to manipulate the shape of the ensemble
[25,26]. We illustrate a slightly modified version of this tech-
nique with no kicking. Start with a Gaussian ensemble with
no g—p correlation, for illustration purposes, although the
method works on arbitrary initial conditions. If we draw a
line along the full width at half maximum of the Gaussian,
this ensemble can be pictured as an ellipse in phase-space
with major and minor axes aligned with the position (along
the horizontal) and momentum (along the vertical) direc-
tions. Now let p evolve under the free-particle Hamiltonian,
that is, with no trapping potential. Particles with initial
greater momentum now move faster. This shears the Gauss-
ian ellipse out along the ¢ axis such that one of the axes is
now along a g—p direction that is being rotated clockwise as
a function of time, and the other axis, which must remain at
90° to this, is therefore also being rotated. More to the point,
as the shearing continues the Gaussian becomes more and
more like a cigar in shape, with one width growing and the
other shrinking.

At some suitable point (in principle the method improves
monotonically as free-particle evolution is allowed to occur
for longer times, r— ), change the evolution dynamics to
that of a harmonic oscillator. That is, change the dynamics by
applying the potential V,,(q)=(1/2)kg* to the system. In a
harmonic oscillator with suitably scaled variables, all solu-
tions travel in circles with the same frequency. As such, the
effect of applying the harmonic oscillator potential is to ro-
tate the cigar-shaped Gaussian ellipse of the distribution. If
V), 1s applied for the correct length of time, the distribution
rotates around such that the narrow part of the cigar-shaped
Gaussian is aligned with the momentum axis and the long

PHYSICAL REVIEW A 72, 013406 (2005)

part with the position axis. The net result is that this has
lowered the momentum width (or average kinetic energy or
the temperature) of the ensemble. In principle, there is no
formal lower limit to the width of the distribution using this
protocol and moreover, no issues of trying to address specific
highly localized subensembles. This simple and direct
method (sans feedback) works to decrease the momentum
width of an ensemble. The nominal disadvantage of this
method is that the decrease in the momentum width comes at
the expense of the increase in position width.

Formally [that is, when analyzing the total distribution
p(q,p)], Liouville’s theorem applies to delta-kick cooling be-
cause the dynamics are entirely Hamiltonian. As such, this is
formally an exact tradeoff, so that the phase-space density is
not changed by this method. However, any “real”
ensemble—that is, an ensemble consisting of a finite number
of particles or with finite phase-space resolution—is subject
to the coarse-grained analysis above. For such a system, the
coarse-grained probability density actually drops and the
CGE increases during the free-particle evolution. An obvious
extreme illustration of this is to consider an initial ensemble
of just a few particles: as the faster ones move further away
from the center of phase-space, the asymptotic solution has
these particles widely spread out in phase-space. During the
harmonic oscillator part of the process, all particles travel in
circles with the same frequency and there is no change in
phase-space density. In Figs. 1-3 we show results from a
numerical simulation of the free-particle expansion phase of
delta-kick cooling, showing both the reshaping of the distri-
bution as well as the increase in the coarse-grained entropy.

This increase of CGE means that delta-kick cooling is
therefore most applicable when starting with significant
phase-space density, or equivalently when the parts of the
distribution at large g can simply be discarded, in a sense
analogous to evaporative cooling, which discards parts of the
distribution with high momentum.

We now turn to specific phase-space dynamics illustra-
tions for how there can be a net decrease in the CGE using
Hamiltonian dynamics.

IV. PHASE-SPACE DYNAMICS AND CGE DECREASE

The previous discussion, including the Rydberg atom re-
sults, show that protocols for CGE decrease using Hamil-
tonian dynamics are both theoretically and experimentally
viable and have potentially interestingly applications. It is
important to uncover how the details of the Hamiltonians
chosen qualitatively and quantitatively affect this coherence
enhancement, and how the phase-space structure can be ex-
ploited in general. One route to do this is to examine the
phase-space trajectory dynamics, that is, the way in which
individual trajectories travel on nonlinear orbits, and to see
how this controls the global oscillatory behavior of the
coarse-grained entropy. Since our interest is in building intu-
ition for the general case, the discussion below is largely
qualitative and depends strongly on visualization of trajec-
tory and distribution dynamics in phase-space.

We have studied this with some care for some paradig-
matic nonlinear problems, in particular for a one-
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FIG. 1. (Color online) Increase
g of CGE for delta-kick cooling.
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dimensional (1D) sinusoidal potential that is “always on,” or
applied in short pulses (approximated as delta-function
kicks). The always-on system is the pendulum, of course,
while the kicked system is known as the Standard Map. The
restriction to these 1D problem is useful: First, this enables
us to get to the physics without many complications. Second,
many interesting experiments involving laser cooling and
trapping have actually been done with such 1D systems
[26,27]. Our Hamiltonians for the two systems in suitably
scaled units are

Hpendulum :p2/2 -k cos(q), (31)

Hgandard Map = p2/2 - K COS(CI)E ot —nT). (32)

The phase-space dynamics for the pendulum for any value of
k can be represented by curves in the ¢, p plane of two
primary kinds. The first are closed, nearly elliptical at lower
energy, curves corresponding to oscillatory motion and the
second are lines running across the phase-space from left to

FIG. 2.
cooling.

(Color online) Initial condition for delta-kick

0.25 0.3

right for positive p and from right to left for negative p.
These latter lines correspond to the pendulum rotating
around its pivot point. There is a stable point at (g=0, p=0)
consisting of the pendulum being stationary vertical down-
wards with zero energy [identified with the point (g=2r, 0)].
An unstable fixed point (a saddle) exists at (g=1, p=0) cor-
responding to the oscillator being vertical upwards. The
stable and unstable manifolds associated with this unstable
fixed point are the same, and this pair of manifolds forms the
separatrix between the two different solutions discussed
above for the system. Further, (i) for the oscillating solution,
the period of the solution increases with the initial amplitude
and/or initial energy and (ii) these trajectories spend a longer
proportion of this time in the neighborhood of the turning
point as the initial amplitude and/or initial energy is in-
creased; the separatrix has infinite period. These two proper-
ties turn out to be very important in focusing. The Standard
Map has far more complicated dynamics for general values
of k but for k<<1, the dynamics are essentially the same as

(11y
{
0.008 | '*vv

0.006
0.004}
0.002

FIG. 3. (Color online) Distribution after free expansion for
delta-kick cooling. Notice the change in shape, as well as the de-
crease in peak height. The jagged character of the distribution
comes from the finite number of ensemble members in each bin.
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FIG. 4. (Color online) De-
crease of CGE followed by its in-
crease for grad-H effect.
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for the pendulum, at least for the purposes of our discussion.
The point of using the Standard Map is to clarify that kicked
systems can be intrinsically Hamiltonian and also to make
computation faster in general.

We study probability distributions for this system by
specifying many initial conditions and binning them in boxes
in the ¢, p plane, enabling us to construct a CG distribution
[7]. p(2) is generated by evolving each trajectory and gener-
ating the binned distribution again. The coarse-graining ne-
glects higher-order information about p; when the nonlinear
dynamics moves information up from the finest scales, the
information gained about p localizes it. We assume that to
externally manipulate p we can (i) apply the pendulum po-
tential either constantly or in kicks, (ii) and apply nonlinear
momentum kicks where the momentum transfer is position
dependent. Simpler operations assumed possible are (iii)
Free-particle expansion (no potential), (iv) harmonic oscilla-
tor evolution as needed. While there is no specific attempt
here to consider experimental protocols, we do work with
tools that have previously been implemented in atomic sys-
tems for example. We have uncovered effects of interest
which we now discuss.

A. “Grad-H” effect

The first effect (which we term the “grad-H” effect) arises
from the way phase-space trajectories slow down as they
approach the turning points of their orbits. As such, turning
points or unstable fixed points are natural foci for ensembles,
since trajectories spend a lot of time in the neighborhood of
such points. The time spent is given by the inverse of the
phase-space velocity field at each point. That is, for a general
Hamiltonian H, the time spent at a point (p,g) is propor-
tional to |v|™! where the phase-space velocity is

(5] -5

172

vl = |(p.4)| = |V H]| = (33)

Consider an ensemble isolated on a microcanonical shell
[H(p,q)=E] of a nonlinear integrable Hamiltonian (that is,
all members of the ensembles have the same energy) and for
simplicity in the discussion that follows, consider this to be
in a 2D phase-space, so that the microcanonical shell is a
closed orbit. It is intuitive that as every trajectory spends
greater time in the slower part of the orbit, a cloud of par-
ticles started off elsewhere on the orbit will tend to become
dense in this part of phase-space.

Formally, consider an element of area dw(0) at time =0
on a microcanonical surface. If there is a total of N ensemble
members, then the number of these lying within dw is

dN =No(0)dw(0), (34)

where o is the microcanonical surface probability density for
the ensemble (that is, o is the notation we use for p when
restricted to a microcanonical surface). If we follow this
cloud dN as it evolves, at some later time 7,

dN = No(t))dw(t;) = No(0)dw(0). (35)

Now recall that the invariant probability measure for a
Hamiltonian on its microcanonical shell corresponding to
this area dw is the Liouville measure [28]

- . . do
du=8E-H(p,q)ldp dg=——-. (36)
|VH|

This being constant, we have the equality

dw(0) _ do(t))
IVH|—o  |VH|,

(37

Combining Egs. (35) and (37), we get that [29],
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FIG. 5. (Color online) Initial condition for grad-H effect.

o(0)|VH| o= o(t)|VH|, . (38)

i.e., that the surface probability density alters form as it
evolves on the microcanonical trajectory so as to conserve

o|VH|. This can be exploited to transiently enhance the
phase-space density o(¢) significantly using nonlinear Hamil-
tonians, where the phase-space velocity varies signficantly in
different regions on a microcanonical shell. Specifically, as a
result of this grad-H effect, and an ensemble on the micro-
canonical shell chosen such that it is not yet the invariant
distribution, the entropy must oscillate. With the right initial-
ization, the intensity increases periodically as the particles
focus near the turning points. In a 2D phase-space, this cor-
responds to distributing ensemble members at arbitrary
phases along a natural orbit and watching them subsequently
focus at the turning point.

Note that this effect is then explicitly independent of any
coarse-graining for the distribution. The degree of density
enhancement depends on the ratio v;/v,, where v; represents
an average over the absolute value of the initial phase-space
velocity and v, represents the minimum absolute value of
the phase-space velocity (at the turning point) along the or-
bit. For a sufficiently nonlinear orbit and with appropriate
choice of initial condition this can be a very large number. In
fact, under idealized conditions of the initial condition being
a line segment localized along the stable manifold of a
saddle point, all the trajectories reach the saddle point in
infinite time, giving infinite density and zero entropy at this
point.

As an application of this method, for example, consider
starting with an initial condition that is a flat thin distribution
(essentially a line segment) in phase-space. It is now possible

FIG. 6. (Color online) Previous state after being subject to a
position-dependent kick that places it on the stable manifold of an
unstable fixed point.
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FIG. 7. (Color online) Previous state after evolution in the pen-
dulum potential, at t=1.0, when the distribution has contracted
along the stable manifold.

to provide a position-dependent momentum kick such that
this line is placed on the “fast” part of a phase-space orbit.
We would now see that this distribution increases its coher-
ence periodically as it evolved on a given elliptical orbit or
ring of orbits. The more this distribution can be made to
approximate the fast subset of a natural microcanonical orbit,
the more effective the enhancement will be.

We have done numerical experiments to demonstrate
these arguments, and some of the results are show in our
figures. In Figs. 4-9, we work with a pendulum system, and
start with a Gaussian distribution of trajectories which is al-
most a line segment in phase-space. This state is then given
a position-dependent kick so that the central line now ap-
proximates a subset of the pendulum separatrix. Given the
initial distribution of finite width, it now actually spans a set
of different energies near the separatrix as a result. That is, it
is distributed across a band of orbits of the nonlinear oscil-
lator. As the distribution evolves, the peak density increases
dramatically. We have chosen the central orbit to be the sepa-
ratrix, which maximizes the increase in density as the entire
distribution seems to converge to the unstable fixed point. To
understand how this is working even though p is not on the
microcanonical shell, note that any such distribution is a sum
(integral) over distributions, each on a microcanonical shell.
Now, since Hamiltonians do not mix contributions from dif-
ferent shells, the argument for each shell applies separately.
Since the orbital frequencies are not very different for a nar-
row enough band of orbits, the different shells will “focus”
on approximately the same time scale.

There are some points to note: (i) The time for which the
focusing is useful is a function of the width of the Gaussian

S

p

FIG. 8. (Color online) Same as above, at t=2.5. Note the change
of scale on all three axes. The distribution is now sharply focused at
the unstable fixed point.
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FIG. 9. (Color online) Same as above, at t=3.25. After the tran-
sient focusing, the distribution begins to stretch along the unstable
manifold of the stable fixed point.

that is fed into the process; as the dynamics continue there-
after, the trajectories leave along the unstable direction, re-
sulting in a net decrease of focus. (ii) Such behavior occurs
near all unstable fixed points (and a parabolic oscillator po-
tential would work as well, for example). By choosing po-
tentials appropriately, we can manipulate the ensemble as
needed. (iii) After focusing, the distribution can be trapped at
the stable fixed point of the pendulum by moving the poten-
tial and applying a momentum kick as discussed before. (iv)
There is an interesting parallel: This effect mirrors in phase-
space the techniques [30] that use anomalous diffusion in
momentum such that an ensemble spends an increasing
amount of time in the p=0 region and hence focuses the
distribution to lower temperatures.

These results demonstrate that Hamiltonian dynamics ap-
propriately used can lead to phase-space focusing; this
method is directly applicable in situations where the experi-
mentally accessible distribution is in the shape of a phase-
space cigar, for example.

If the trapping kicks are not applied, in the long run the
oscillatory behavior of the distribution on the microcanonical
shell dephases. The distribution then relaxes to the invariant
distribution for the orbit. In this particular case, the dephas-
ing is expected to happen over many natural time periods of
the orbit in question. The dephasing is due to noise effects,
computationally corresponding to numerical error, or physi-
cally to environmental perturbations or small particle-
particle interactions which is why it takes a long time in
general. For the pendulum, the invariant distribution has two
peaks corresponding to the two turning points for the orbit.
This double-peaked distribution is not very useful since it
arises at very long times; further, since the distribution fills
the entire microcanonical shell, it does not show the same
dramatic enhancement of intensity as the short time behavior
does, as discussed above. However, even this state can be
manipulated further using a different characteristic of nonlin-
ear phase-spaces, as we discuss below.

B. “Inverse dephasing” effect

The grad-H effect, which is most effective on a single
microcanonical shell, is not the only useful focusing effect in
nonlinear Hamiltonian dynamics. It is possible to increase
the coherence even when the distribution is across various
different microcanonical shells (as previously shown). Even
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when given the microcanonical invariant as initial condition
(a state that is explicity unaffected by the grad-H effect), it
can be further manipulated for enhanced coherence. This is
through a second effect we term the “inverse dephasing” or
“soundless echo” effect by analogy with the second half of
the spin-echo problem.

As previously discussed in the spin-echo problem, in a
nonlinear integrable oscillator nearby trajectories travel
around in closed orbits with varying frequencies. If a range
of these orbits is populated such that the faster orbits are
“behind” the slower orbits in their approximately common
route, then at some future time the particles will all be closer
together in phase-space. This is the basis of what we call the
inverse dephasing effect. The difference between our sugges-
tion here for the use of this effect in general Hamiltonian
systems and the spin-echo case is that the latter is based on
the knowledge that at some time in the past a coherent state
existed, so that some form of time-reversal can help access it.
In contrast, we will now show how to take some initial con-
ditions and exploit the geometry of phase-space so that the
“coherent” or relatively focused state is a future state of the
system. The spin-echo effect does not rely on a Maxwell’s
demon, but a so-called Loschmidt’s demon (the macroscopic
arrangement of “initial conditions” obtained from an initially
coherent superposition via dephasing and reflection to get
future coherence). Our suggested protocol is a variation on
this demon, one that exploits our knowledge of the nonlinear
geometry of phase-space to get future coherence.

This inverse-dephasing or soundless echo effect is exag-
gerated for nonlinear oscillators by the slow-down (the
grad-H effect) near the turning points of the orbits which will
all typically be in the same phase-space neighborhood. The
spin-echo problem does not show this grad-H effect because
the dynamics are those of a linear oscillator with different
frequencies for each member of the ensemble.

We have studied this in the Standard Map problem. We
take as initial condition the microcanonical invariant distri-
bution on a given orbit with its natural peaks and perturb it
by moving it in phase-space relative to the natural orbit.
Natural ways of perturbation are (i) rotate the distribution in
phase-space using the harmonic oscillator potential—since
the initial condition is an invariant for the nonlinear potential
which is not a circular shape, this will distribute the en-
semble members along various different orbits. (ii) Give the
distribution a p kick—that is, give every member of the dis-
tribution the same momentum translation (or equivalently,
give the distribution a ¢ kick). (iii) Change the kick strength
k slightly, that is, introducing a perturbation Ax. In principle,
we can also combine these perturbations.

In all of these cases, we find that the CGE oscillates in
time, and more importantly, shows a very satisfactory de-
crease during these oscillations. That is, the coherence in-
creases significantly in general. Note that we do not have to
start with the microcanonical ensemble, of course. The be-
havior is essentially the same in all three cases, and we focus
in what follows on the particular case of the third perturba-
tion above (changing k).

For a general argument for time dependence of the CGE,
remember that the oscillations come from the average over
oscillations as in Eq. (24). Let us take the oscillations of the
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FIG. 10. (Color online)
Dephasing oscillations in the CGE
for the ‘inverse dephasing’ effect
with k=0.065, Ax=0.01. Notice
the first prominent dip in the curve
before the oscillating drift higher.
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tangent space (or equivalently the distribution gradient)
around individual orbits as being approximately sinusoidal
cos(w;t+ ;) where w; is the frequency and «; is the phase of
the ith oscillation. The final result, a weighted average over
many different oscillations, can be approximated to first or-
der to be of the form

> Ajcos(wit + ), (39)

where A; is the weighting factor (in general, of course, the
time dependence is oscillatory but not sinusoidal). This sum
is therefore finally of the form

X = cos(at)cos(Awr), (40)

where @ is the frequency averaged over the different orbits
and Aw is the spread in frequencies. Since Aw is typically
much smaller than o, this leads to the prediction of “rapid
oscillations” at @ with an envelope function that is oscillat-
ing at Aw. Also, as a result of the combination of the two

oscillations, the peak coherence obtains through the
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FIG. 11. (Color online) Initial condition for the inverse dephas-
ing effect, the microcanonical distribution for an energy shell, with
a double-peak corresponding to the two unstable fixed points.

2000 2500

cos(Awt) term and hence should be on the time scale 7
~1/(Aw).

We have seen these kinds of behavior clearly in the nu-
merical experiments. The results show that the CGE as a
function of time exhibits dephasing oscillations that are very
analogous to beating. The behavior is completely general for
a very large range of parameters, differing only in specific
details of size and time scales. We show typical oscillations
for an initial k=0.065 and a Ax=0.01 in Fig. 10 as well as
snapshots of the distribution in Figs. 11-15 as a function of
time, showing the clear change in phase-space coherence and
corresponding increase in peak height. The snapshots of the
distributions when followed over long times show a similar-
ity to the “revival” part of the quantum phenomenon of
“wave-packet revival” [31]: The difference, as with the spin-
echo problem, is that in this result we are showing the cre-
ation of a coherence, and not the recovery of a coherence.

Note that as the perturbation strength Ax— 0, the number
of different orbits populated also —0 and hence Aw—0,
which implies that the time to the maximum 7— o, as can be
seen in Fig. 16. A similar effect is seen in the the scale of the

i
L3 Wﬁlﬂﬂn‘m

:\3\:

FIG. 12. (Color online) At T=190 kicks, a transient stage veri-
fying that because of the various frequencies participating, the dis-
tribution can actually be less focused on the way to greater
focusing.
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FIG. 13. (Color online) At T=320 kicks, the peaks are clearly
visible already, and can be seen to be not at the turning points.

increase of coherence, shown in Fig. 17. Again, both the
grad-H and inverse dephasing effects contribute to this. As
Ak—0 and Aw— 0, the coincidence of the different periods
becomes better, leading to an enhanced increase of coherence
for decreased perturbation in general. However, while Aw
monotonically decreases with Ak, the ensemble distributes
itself in complicated ways on the different orbits as a result
of the perturbation. That is to say, the coefficients A; from
Eq. (39) are a complicated function. The details depend on
the detailed shape of the relevant orbits, and the form of the
initial distribution. The maximum decrease in entropy 2
=AS,.x 18 therefore not a monotonic function of Ak, even
though there is a general trend to better results at small per-
turbations.

Loosely speaking therefore, the best results are obtained
for the smallest perturbation (although this has to be fol-
lowed by the longest wait). This rule of thumb is constrained
by the impact of the ultimate resolution limit (the finite size
of the coarse-graining cells) as well as the dynamical coarse-
graining (numerical round-off error). That is, there is a satu-
ration effect for the smallest perturbations.

To summarize the connection between phase-space struc-
ture and CGE dynamics therefore:

(i) If mapped onto an appropriate subset of a microca-
nonical distribution for a nonlinear Hamiltonian, the grad-H
effect works to enhance the density. As appropriate, the more
extreme the change in phase-space velocity on an orbit, the
larger this effect.

(ii) An initial condition that resembles the microcanoni-
cal distribution of a specific nonlinear Hamiltonian can be
perturbed onto the neighboring energy shells to exploit the
inverse dephasing effect. The smaller the perturbation, the

‘H“’“._

FIG. 14. (Color online) At T=333 kicks, at or near a maximum
in the transient focusing from inverse dephasing.
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FIG. 15. (Color online) The distribution from Fig. 14 seen much
later (at T=2400 kicks) showing that the dephasing has lead to an
incoherent distribution spread across the accessible orbits.

better the coherence enhancement, although the longer it
takes. There is a limit to this, arising from noise effects.

V. DISCUSSION AND CONCLUSIONS

We now consider some applications resulting from the
coarse-grained analysis.

A. Violating Liouville’s theorem in infinite time

One point of theoretical interest is that by combining
ideas from delta-kick cooling and the grad-H effect on an
unstable manifold, Liouville’s theorem can be seemingly
violated. To see this, consider starting with a standard two-
dimensional distribution, a Gaussian in phase-space space,
say. If we allow this distribution to evolve under the free-
particle Hamiltonian, an infinitely thin Gaussian will be ob-
tained in infinite time. This transforms a two-dimensional
distribution with finite thickness in all directions to one that
is infinitely thin in one direction and infinitely long in the
other direction. Now consider this one-dimensional distribu-
tion being rotated onto the stable manifold of an unstable
fixed point, that is, applying a harmonic oscillator potential
for the appropriate amount of time, followed by a static in-
verted quadratic potential V(g)=-¢>/2. In that case, after
infinite time the entire distribution will accumulate at the
origin, thus being reduced to a zero-dimensional distribution.
We therefore seem to have violated Liouville’s theorem,
changing the phase-space volume from something finite to
zZero.

Liouville’s theorem remains valid for practical purposes,
however, since this result requires two procedures each tak-
ing infinite time that must be followed in sequence. If either
or both processes is followed for finite times, the free-
particle evolution results in a finite-width Gaussian that can
then re-focus using the stable manifold, but will yield a two-
dimensional distribution that is only as focused as the initial
condition itself.

B. Improved cooling

A simple practical application of these ideas is to improve
the delta-kick cooling protocol. Remember that delta-kick
cooling consists of two phases, the first being a free-particle
expansion phase which converts an arbitrary Gaussian in the
g—p phase-space into a long thin version (a cigar shape)
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oriented at an angle to the g axis. This angle depends upon
the time for which the free-particle evolution takes place, and
the second phase of the protocol is to rotate the distribution
onto the ¢ axis by applying the harmonic oscillator potential
for the appropriate length of time, which depends on the
length of time used for free-particle evolution.

We suggest replacing the free-particle evolution with evo-
lution in the inverted quadratic potential. After a rapid tran-
sient initial evolution inwards along the stable manifold of
the unstable fixed point of that potential, the Gaussian then
evolves to stretch along the unstable manifold of the poten-
tial, rapidly becoming infinitely thin and long. This means
that the time to a given temperature or momentum width can

be reduced dramatically from the free-particle case, and can
be made as short as needed, by increasing the curvature of
the potential. Second, the time for which the static harmonic
oscillator potential is applied is now a fixed quantity, since it
depends only on the curvature of the potential. This reduces
the need to measure or control the time of free-particle evo-
lution to high accuracy.

Another point is that instead of changing various poten-
tials for specified periods of time as above, one could instead
use an “always-on” potential with ¢" where n is a high even
number (n=10) say. This yields dynamics essentially the
same as delta-kick cooling—a reasonably well-localized dis-
tribution experiences ¢" for ¢<<1 and is initially essentially

FIG. 17. (Color online) Maxi-
mum in change in CGE versus
perturbation for inverse dephasing
effect.
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free. It therefore stretches into a cigar shape as all the par-
ticles travel parallel to the g axis with speeds that depend on
their distance from the axis. As the faster particles get to the
g>1 regime, they encounter a sharp potential wall, and
change direction abruptly, which results in the distribution
turning sharply in phase-space to orient along the g axis. The
specific dynamics in this case yields a small curlicue at the
ends of the distribution coming from the nonlinear turning,
although the effect of this curlicue can easily be made neg-
ligible.

As argued above, however, delta-kick cooling is in gen-
eral accompanied by an increase in CGE and hence a de-
crease in effective phase-space density. We have shown
above that it is possible to decrease CGE and increase effec-
tive phase-space density for certain situations. In general,
there is no formal reason why it should not be possible to
find a set of potentials and corresponding protocols such that
the distribution cannot have its CGE decreased. The distri-
butions that are most easily and maximally improvable look
like simple tendrils in phase-space (that is, long and thin
distributions which are not wrapped in complicated ways
since that would make the potentials and protocols for im-
provement equally complicated).

C. Gaussians moved between potentials of different curvature

Clearly, we cannot decrease the CGE when the initial dis-
tribution has the minimal possible CGE for that particular
distribution. To understand the idea of the minimal CGE
state, remember that the CGE is extremely well-described by
the (hyper)surface area for the distribution. For a distribution
of given phase-space (hyper)volume, this means that there is
a shape that minimizes its CGE. This is the shape of maxi-
mum symmetry, the sphere: the minimum perimeter for a
given area in two dimensions is for a circle.

A thermal Gaussian can be represented, in suitably scaled
units, as a circle in phase-space. Therefore the above seems
to imply that it is not possible to decrease the CGE for a
distribution that is initially a circle and hence that a thermal
cloud cannot be further focused. However, this turns out to
be true only if we continue to work with the same harmonic
oscillator throughout. If we start with a “circular” Gaussian
distribution generated in a given harmonic oscillator, it can
be manipulated to decrease the CGE if the final target state is
for an oscillator with a different frequency.

The argument goes as follows: Working in two phase-
space dimensions for simplicity, consider any harmonic os-
cillator and a thermal Gaussian state as initial condition.
Since phase-space has no well-defined metric, we can now
rescale our g, p units such that this distribution is represented
as a circle. As such, the distribution would then have “mini-
mum perimeter” for its area. But this cannot be enough to
define the lowest entropy state, since a Gaussian of different
shape can also be scaled to be circular with a different sys-
tem of phase-space units. We therefore need additional crite-
ria for a unit of minimal entropy. One possibility for such an
object is the minimum-uncertainty Gaussian for a given har-
monic oscillator (also known as a coherent state in quantum
mechanics, equivalent to a possibly displaced ground state).

PHYSICAL REVIEW A 72, 013406 (2005)

This object is symmetrical in ¢, p and can hence be used to
define a circle in phase-space. Interestingly, this state also
does not change shape under the action of the harmonic os-
cillator Hamiltonian. Any other Gaussian in phase-space cor-
responds to a squeezed state: These “breathe” as a function
of time where they continue to have the same area, and hence
the same uncertainty, but change shape. This makes using a
minimum-uncertainty state sensibly self-consistent. Such a
minimum-uncertainty Gaussian is therefore the correct can-
didate to define a circle for a given harmonic oscillator. All
Gaussians with the same shape (aspect ratio in p, ¢, as well
as lack of p—g correlation) as a minimum-uncertainty state
then correspond to circles in phase-space; this allows them to
be of arbitrary size.

However, this means that every harmonic oscillator has a
different definition for a circle or for a minimum entropy
state. A state that corresponds to a circle for a given har-
monic oscillator looks like an ellipse for an oscillator with a
different frequency. This suggests that we can change the
CGE for an initial condition that is created as a thermal
Gaussian within a given harmonic oscillator, say, by chang-
ing the curvature of the external potential—that is, by plac-
ing it in a different harmonic oscillator. It might seem para-
doxical that the minimum entropy state is not absolute. That
is, since every harmonic oscillator has its own definition for
a minimum entropy state, we cannot tell if a state is at mini-
mum area without specifying which harmonic oscillator we
are considering. Some consideration shows that this is not a
contradiction, however. We have to specify our resolution
(quantum mechanically, the target wave function with which
we are going to overlap our distribution) before deciding
how something can be observed. This is precisely the same
meaning as these ideas about Gaussians in different oscilla-
tors.

As a practical result, it means that we can use CGE-
analysis-based protocols as above to both decrease tempera-
ture (as in delta-kicked cooling) and increase phase-space
density for Gaussian initial conditions. In particular, if the
initial condition can be treated as a “vertical ellipse” then we
can both increase the density and reduce its momentum
spread in making it a circle by working with a target state in
a harmonic oscillator of greater frequency.

D. “‘Spin-echo effect” in atomic ensembles

The somewhat counterintuitive “refocusing” of the signal
in the spin-echo effect has generated debate in the literature
on the nature of reversibility in physical systems. This partly
stems from the lack of many other experimentally imple-
mented examples of this kind of behavior [17]. The critical
issue in this effect is that the refocusing in microscopic dy-
namics is effected by macroscopic changes in external poten-
tials. Our discussion above shows that the spin-echo system
is not intrinsically distinct from other Hamiltonian systems.
As such, in the interest of clarifying this discussion of revers-
ibility and coarse-grained entropy, we point out that it is
straightfoward to show the equivalent of the spin-echo effect
in atomic ensembles.

Possible protocols, among the many that can be imagined,
are as follows:
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(i) Start with any finite ensemble, possibly distributed as
a Gaussian, localized at g=0, p=0 in phase-space.

(ii) Allow for free-particle evolution (equivalent to the
free precession part of the spin-echo dynamics) for time ¢
=T). As the distribution evolves, the central density and ex-
perimental signals associated with the density degrade. Con-
sider a straight line drawn to a particle originally on the p
axis; as a result of the evolution, this is now oriented with
respect to the g axis at some angle #; which depends upon
T,. Alternatively, as suggested above for the improved delta-
kick cooling situation, allow the distribution to evolve on the
inverted quadratic potential; in appropriately scaled units, in
this case, the equivalent angle is 6] =1/4.

(iii) At this stage, equivalent to the spin-flip or magnetic-
field flip part of the spin-echo problem, apply a harmonic
oscillator potential for a time t=T),. If (ii) was free-particle
evolution, then this has to be chosen so that the distribution
is rotated clockwise through an angle 6,=26,+ . If (ii) was
on the inverted quadratic potential, the clockwise rotation
should be through 37/2.

(iv) This is the stage equivalent to the refocusing part of
the spin-echo problem. Depending on the choice in (ii) again,
we now allow for free-particle evolution again or for evolu-
tion on the inverted quadratic potential, respectively. As in
the spin-echo problem, the ensemble will transiently refocus
as a result of the evolution [32]. The experimental signal will
increase in strength as a result of the refocusing.

This protocol can be easily implemented in the laboratory,
and should help clarify that the spin-echo effect is not intrin-
sically different. Further, decays in the experimental signal as
a function of the time spent in (ii) would be an interestingly
simple monitor of environmental and many-body effects.

E. Possible quantum effects

How is all this affected by quantum effects? The broader
ideas of changing coarse-grained entropy and corresponding
changes in the physical distribution clearly hold even when
the evolution is quantum mechanical.

Further, the delta-kick cooling protocol presented here,
using (at most) quadratic potentials, including the modifica-
tions that we have introduced above, are completely unaf-
fected when we consider quantum corrections. This is be-
cause classical and quantum distributions evolve identically
in quadratic potentials.

The grad-H effect is the most challenging to translate into
quantum mechanics because of the occasionally remarkable
differences in quantum and classical behavior in the neigh-
borhood of unstable fixed points in phase-space. However,
this effect can be implemented using the inverted quadratic
potential as well. In that case again, the quantum dynamics
follow the classical ones, and the predictions carry over.

Finally, the particular issue of the “inverse dephasing”
effect: In the classical case, there is a continuous spectrum,
that is, the classical orbits have a continuum of frequencies,
whereas in the quantum case, there are only a discrete set of
frequencies involved. This means that in the absence of
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external noise, the CGE oscillations do not dephase quantum
mechanically without external effects. This predicition has
actually been verified in the Rydberg atom case using quan-
tum calculations [3].

F. Conclusion

Coherence increase is a completely general effect in the
behavior of ensembles in nonlinear Hamiltonian systems
with potentially interesting applications. By considering
simple nonlinear systems, we have made progress in under-
standing general principles of how this phenomenon works,
in particular clarifying the role of classical turning points,
and the impact of small perturbations on microcanonical en-
sembles.

There are some interesting ideas about the efficacy of
Hamiltonian dynamics in changing phase-space density or
the entropy resulting from this analysis. The “standard” in-
terpretation is that these things (or the degree or localization
or focusing) of a classical or quantum density cannot be al-
tered, and in particular cannot be increased, by purely Hamil-
tonian methods. The phenomenon of coherence enhancement
shows that this intuition does not apply in general. In this
paper we have discussed at least two ways in which this is
altered which can be understood in terms of phase-space tra-
jectories for nonlinear Hamiltonians.

The first is that when thinking of an ensemble on a mi-
crocanonical shell, for example, the correct quantity that is
conserved is the Liouville measure, which includes a weight-
ing by the local phase-space velocity. As such, evolution on
microcanonical shells for nonlinear Hamiltonians with a
wide variation in local phase-space velocities can be used to
significantly enhance densities. The second is that the shape
of distributions matters a great deal in determining the effec-
tive phase-space density or localization of the distribution.
This leads to the utility of effects such as the inverse dephas-
ing phenomenon, where a phase-space distribution can be
placed with the faster orbits behind the slower orbits such
that the distribution focuses at a future time.

In conclusion, these analyses confirm that the phenom-
enon of coherence enhancement in the dynamics of prob-
abilities evolving under nonlinear Hamiltonians is not a
trivial or formal effect. The nonlinearity has a nonintuitive
impact on their behavior and can be chosen to alter the co-
herence or degree of localization of the ensemble. We antici-
pate various interesting applications of this phenomenon; it
would be particularly challenging to understand the particu-
lar choice of Hamiltonians for given application and initial
condition that will allow the effect to be maximized, and this
constitutes ongoing research.
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